Sulfuric acid and OH concentrations in a boreal forest site
نویسندگان
چکیده
As demonstrated in a number of investigations, gaseous sulfuric acid plays a central role in atmospheric aerosol formation. Using chemical ionization mass spectrometer the gas-phase sulfuric acid and OH concentration were measured in Hyytiälä, SMEAR II station, Southern Finland during 24 March to 28 June 2007. Clear diurnal cycles were observed as well as differences between new particle formation event days and non-event days. Typically, the daily maximum concentrations of gas phase sulfuric acid varied from 3×105 to 2×106 molec cm−3 between non-event and event days. Noon-time OH concentrations varied from 36×105 molec cm−3 and not a clear difference between event and non-events was detected. The measured time series were also used as a foundation to develop reasonable proxies for sulfuric acid concentration. The proxies utilized source and sink terms, and the simplest proxy is radiation times sulfur dioxide divided by condensation sink. Since it is still challenging to measure sulfuric acid in ambient concentrations, and due to its significant role in atmospheric particle formation, reasonable proxies are needed. We use all together three different proxies and one chemical box model and compared their results to the measured data. The proxies for the sulfuric acid concentration worked reasonably well, and will be used to describe sulfuric acid concentrations in SMEAR II station, when no measured sulfuric acid data is available. With caution the proxies could be applied to other environments as well. Correspondence to: T. Petäjä ([email protected])
منابع مشابه
Applying the Condensation Particle Counter Battery (CPCB) to study the water-affinity of freshly-formed 2–9 nm particles in boreal forest
Measurements on the composition of nanometersized atmospheric particles are the key to understand which vapors participate in the secondary aerosol formation processes. Knowledge on these processes is crucial in assessing the climatic effects of secondary aerosol formation. We present data of >2 nm particle concentrations and their water-affinity measured with the Condensation Particle Counter ...
متن کاملHygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid
The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid c...
متن کاملComposition and temporal behavior of ambient ions in the boreal forest
A recently developed atmospheric pressure interface mass spectrometer (APi-TOF) measured the negative and positive ambient ion composition at a boreal forest site. As observed in previous studies, the negative ions were dominated by strong organic and inorganic acids (e.g. malonic, nitric and sulfuric acid), whereas the positive ions consisted of strong bases (e.g. alkyl pyridines and quinoline...
متن کاملHygroscopicity of aerosol particles in the boreal forest
Hygroscopic properties of ultrafine aerosol particles in the boreal forest: diurnal variation, solubility and the influence of sulfuric acid M. Ehn, T. Petäjä, H. Aufmhoff, P. Aalto, K. Hämeri, F. Arnold, A. Laaksonen, and M. Kulmala Division of Atmospheric Sciences, Department of Physical Sciences, P.O. Box 64, 00014 University of Helsinki, Finland Max-Planck Institute for Nuclear Physics (MPI...
متن کاملAluminium concentrations in Swedish forest streams and co-variations with catchment characteristics.
The negative effects of elevated concentrations of inorganic aluminium on aquatic organisms are well documented. Acid deposition is often cited as a main driver behind the mobilisation and speciation of aluminium in soils and surface waters. In the study, we tested the hypothesis that sulphur deposition is the main driver for elevated concentrations of inorganic aluminium in 114 base poor, bore...
متن کامل